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We try to understand the presence of a quasistatic magnetic field on the basis of the stability of the
laser-plasma system. A general theoretical model of laser self-focusing in the absence of a quasistatic magnetic
field (QMF) is extended to discuss self-focusing in the presence of a QMF. Various transverse intensity profiles
under different axial collective electronic speedsVz are calculated. Numerical results indicate that for suitable
laser power and plasma density, the increment inVz can lead to a further separation between the photon fluid
and the electron fluid and hence a decrement in the energy of the laser-plasma system. This causes it to be
possible for the system state without a QMF, orVz=0 state, to be not stable relative to someVzÞ0 states.
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I. INTRODUCTION

Many experiments and numerical simulations[1–8] indi-
cate that a quasistatic circular magnetic field can be gener-
ated from the interaction of a strong laser pulse with plas-
mas. How to understand this phenomenon has become a
focus of research. Some researchers[4,6] have realized that
the high axial electron current associated with this quasistatic
magnetic field is not a result of plasma-wave acceleration
[9]. There exist some theoretical investigations[10–13] ad-
dressing the direct generation of dc magnetic fields from
laser-plasma interactions. In the framework of cold fluid
theory, a perturbation analysis of the generation of dc mag-
netic fields from the interaction of a laser with large-
longitudinal-gradient plasma is presented in Ref.[12]. Al-
though the perturbation theory in Ref.[12] is successful in
elucidating the relevant physics behind this phenomenon, it
is necessary for us to develop a theory about this issue be-
yond the perturbation approximation if we try to completely
understand this phenomenon. In the perturbative analysis
[12], all physical quantities are expanded as a power series of
the perturbation parameter«, and the ratio between the dc
physical quantities and the oscillating physical quantities is
assumed to be«. Strictly speaking, one cannot determine the
value of « merely from perturbation analysis itself. Obvi-
ously, when the perturbation parameter is zeros«=0d, no dc
physical quantity appears. Hence, a fundamental question re-
mains to be answered, why in some cases the laser-plasma
system can be described by a nonzero perturbation parameter
«Þ0 (i.e., the dc physical quantity appears) and in other
cases be described by«=0 (i.e., the dc physical quantity
disappears). For convenience, we denote the laser-plasma
system as an ac state when no dc physical quantity appears
and as a non-ac state when the dc physical quantity appears.

In present theoretical models of laser self-focusing
[14–19], plasma is taken as unmagnetized. Under this as-
sumption, a plasma electron only quivers transversely in a
laser field; i.e., its momentum only includes a transverse
componentp'=eA. Here,A is the laser vector potential. The
presence of a longitudinal current means that an electron has
a nonzero longitudinal componentpisVzd in addition top'.
Why the electronic momentum isp=p'+pi rather thanp

=p' deserves investigation. A variation inVz can change the
laser transverse structureI = uAu2 because of the relativistic
mass associated withVz. This relation betweenVz and uAu2
drives us to consider the stability of the laser-plasma system
when the laser is strong. If the system keeps itself in the
Vz=0 state, the plasma fluid does not have axial flowing and
the laser keeps itself in a transverse self-focusing structure in
an unmagnetized plasma. Here, the axial drifting speed of the
electron fluidVz is a parameter to identify the state of the
laser-plasma system. In principle, the system can be in any
Vz state. The state with the largest possibility of being
present corresponds to the state most frequently observed in
experiment. The observation of a quasistatic magnetic field
requires us to investigate the stability of aVzÞ0 state rela-
tive to theVz=0 state. We will study in what condition the
system has a larger possibility to stay at aVzÞ0 state than at
a Vz=0 state. In other words, the presence of quasistatic axial
current is understood as a transition of the system state, and
the condition for such a transition occurring is the purpose of
this work. Here, the condition refers to the system param-
eters such as laser power and plasma density. Whether or not
this phenomenon always takes place under any values of the
laser power and of the plasma density is an attractive prob-
lem. If not, we should explain why the occurrence of this
phenomenon depends on this condition. The stability analy-
sis might lead to a valid explanation of such a conditional
occurrence.

This work is organized as follow: the basic equations are
given in Sec. II. The calculation results and the comparison
with experimental results are given in Sec. III. Section IV is
a short summary.

II. THEORY

A. Equation of the beam structure

Newton’s equation and the continuity equation describe
the response of plasmas to a laser field[14]:

]t pz = − mec
2]zsg'gzd + ]zef, s1d

]tsp' − eAd = − mec
2]'sg'gzd + ]'ef, s2d
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]t n + ¹ ·S p

g'gzme
nD = 0. s3d

Here,f is the charge separation potential between electrons
and ions.g'=Î1+se/mc2d2I andgz=1/Î1−sVz/cd2 are the
transverse and longitudinal relativistic factors, respectively.
I = uau2 is the laser intensity anda is the laser vector potential.
n is the density of electrons andme is the rest mass of elec-
trons.p' andpz are the transverse and longitudinal momenta
respectively. Obviously, over a laser cycle,p'=eA and pz
=const is a possible response in the electronic fluid velocity
when the intensity profileI does not vary in axial direction.
The cavitation effect is indicated by the electronic fluid den-
sity: ne=minsNi +mec

4/4pe2¹2g ,0d. Here Ni is the ionic
density.

We consider anS-polarized incident laser of the form

Alab = asz0,j,tdexpfikz0 − ivtg, s4d

z= z0 + j;kc= Îv2 − vp
2,0, s5d

where Alab denotes the vector potential in the laboratory
frame. z is the longitudinal coordinate in the laboratory
frame.z0 is the longitudinal coordinate of the pulse center in
the laboratory frame, and −l ,j, l represents the relative
position to the pulse center.v andk0 are laser frequency and
wave vector, respectively.vp,0 is the plasma frequency. First,
we consider the case in which the longitudinal speed of the
electronic fluid is zero. The equations describing this electro-
magnetic field, in theVz=0 case, read

fc2¹2 − ]ttgA =
4p

c
j', s6d

j' = ene
eA

gmec
, s7d

wherej' is the current density associated with the transverse
quiver motion, and¹2=¹'

2 = 1
4s]z0z0

+2]z0
]j+]jjd Using Eqs.

(6) and (2), we derive a nonlinear Schödinger equation[14]
of a:

i]t a = −
1

2v
Sc2¹'

2 a +
c2

4
]jj a − ]tt aD −

1

4

ikc2

v
]j a

+
1

2v
Vsada, s8d

V =
vp,0

2

g
− v2 +

1

4
k2c2

+ 3c2¹'
2 g − ]ttg +

c2

4
s]z0z0

g + 2]z0
]jg + ]jjgd

g
4 , s9d

wherea has been scaled toe/mc2 and, correspondingly, the
actionA, Lagrangian, and Hamiltonian associated with this
Schrodinger equation read

A = ReA + Im A, s10d

Im A =E Hi
1

2
]tI + ic2 k

8v
]j IJdt dt, s11d

ReA =E XE HIF 1

2v
s]tud2 − ]tuG

+
1

2v
s]tud2S 1

4I
−

1

4s1 + IdDJdt − HCdt, s12d

H =
1

2v
E HFk]ju

2
+ s¹'ud2 + S ]ju

2
D2

+ S k

2
D2GIc2

+
2vp,0

2

gz

Î1 + I − v2I + c2s¹'Id2S 1

4I
−

1

4s1 + IdD
+ c2S ]j I

2
D2S 1

4I
−

1

4s1 + IdDJdt, s13d

where u is the phase ofa, I = uau2 is the intensity, anddt
=dxdydz is the volume unit of the laser pulse.

The continuity equation of the vector potentiala can be
directly derived from Eq.(8):

i]tuau2 =
i

2v
FS2]ttu − 2c2¹'

2 u −
c2

2
]jjuDuau2 − 2c2¹'u¹'uau2

−
c2

2
]ju ]juau2 −

1

2
kc2]juau2 + 2]tu ]tuau2G . s14d

As the phase ofa, u, meets the relations

¹'u = 0;]ju = − k, s15d

]tu = − m;]ttu = 0, s16d

the laser intensity is steady or time independent,]tI =0. The
Lagrangian and Hamiltonian at those steady intensity profiles
are

Ls =
1

2v
E SsmdIdt − Hs, s17d

Ssmd = 2vm + m2, s18d

Hs =
1

2v
E F2vp,0

2

gz

Î1 + I − v2I + c2s¹'Id2S 1

4I
−

1

4s1 + IdD
+

1

4
c2s]j Id2S 1

4I
−

1

4s1 + IdDGdt. s19d

Now we consider the equations describing the laser field
when the electronic fluid has a longitudinal speedVz. Obvi-
ously, the transverse current densityj' depends on the lon-
gitudinal relativistic factorgz. BecauseA is a vector and the
longitudinal current densityjz is perpendicular toA, it seems
plausible to believe that the variation of the electron mass is
only the result of longitudinal fluidity and the right-hand side
of the wave equation ofA is only the transverse current
density j'. On the other hand, we know that Eq.(8) [or Eq.
(6)] can be obtained from variation principledL / da* =0 is
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i]ta= dH / da* where H is the Hamiltonian describing an
electromagnetic field in a medium without longitudinal elec-
tronic current. As longitudinal electronic current exists in the
medium, the Hamiltonian or energy describing the longitudi-
nal drifting movement of electrons is

HeE 1

2
g'gznemeVz

2dt. s20d

Consideringvz
2=1−gz

−2, we rewriteHe as

He =
me

2c4

4pe2sgz − gz
−1dFE 1

2
fvp,0

2 Î1 + IgdtG +
me

2c4

4pe2sgz
2 − 1d

3FE 1

2
fvp,0

2 Î1 + Ic2¹'
2 Î1 + IgdtG . s21d

This HamiltonianHe is in the form of kinetic energy of un-
charged particles. Actually, it can also be written in the form
of the electromagnetic energy associated with charge current,
the j ·A term. The total Hamiltonian for this laser-plasma
system, which is the combination ofH and He in the same
unit, now reads in a dimensionless form

HTE H1

2
F 1

gz
2vp,0

2 Î1 + I − v2I + c2s¹'Id2S 1

4I
−

1

4s1 + IdDG
+

1

2
vp,0

2 Î1 + Isgz − gz
−1d

+
1

2
vp,0

2 c2S−
1

4

s¹'Id2

1 + I
Dsgz

2 − 1dJdt. s22d

If we now apply the variation principle to the total Hamil-
tonianHT, it is easy to obtain a Schrödinger equation when
the longitudinal current exists:

i]t a =
dH

d a*
+

dHe

d a*
. s23d

From this equation, we can find that, except the modified
transverse current, there is another termdHe/d a* appearing
on the right-hand side of this equation. AsVz=0 or gz=1,
this term disappears and Eq.(23) returns to Eq.(8). Although
the longitudinal current densityj z is a vector perpendicular to
A, we should notice that it depends on the vectorA. Hence,
the longitudinal fluidity has an indirect effect on the trans-
verse vector potential via the termdHe/d a* = sdHe/dIda.
This new equation depends on the longitudinal electronic
speedVz via relativistic factorgz. Equations(1) and (23)
consist of an equation set in whicha andVz are dependent on
each other. This equation set is our basic model of the laser-
plasma system. The states of the laser-plasma system are
described bya andVz.

The equation of the steady intensity profile forVzÞ0 can
be derived from Eq.(23):

s+ v2 = −
2

4
F1

I
−

1

1 + I
S1 −

vp,0
2

2
sg z

2 − 1dDG¹'
2 I

+
2

4
F 1

I2
−

1

s1 + Id2S1 −
vp,0

2

2
sg z

2 − 1dDGs¹'Id

+
1

Î1 + I
Svp,0

2

2
sgz + gz

−1dD , s24d

or, equivalently,

C = − ss+ v2dI +
s¹'Id2

4
F1

I
−

1

1 + I
S1 −

vp,0
2

2
sg z

2 − 1dDG
+ Î1 + Ifvp,0

2 sgz + gz
−1dg, s25d

where the term on the left-hand side is a space-independent
constanteC, s=2vm=m2, andm=]tu is the frequency shift of
the laser field. Here, we should note that if the evacuation
occurs—i.e.,ne=minsNi +smec

4/4pe2d¹'
2 g ,0d=0, the laser

field in the evacuation region ofne=0 is described by

s+ v2 = −
2

4

1

I
¹'

2 I . s26d

We discuss the laser field of the vector potentialA
,expsivtd and fixed laser power

P =E v2uAu22prdr =E fv + msvzdg2uAu22prdr . s27d

Considering the singularity of the operator¹'
2 s1/rd]rsr]rd at

r =0, we have]r I ur =0=0. We can solve the laser profile and
the laser frequency from Eq.(25). Note that during the cal-
culation we always monitor whether or not evacuation has
occurred.

B. Stability analysis

As shown previously,a of different vz parameters obeys
the respective variational equations

i]t a0 = U dHT

d a*
U

a=a0

, s28ad

i]t avz
= U dHT

d a*
U

a=avz

. s28bd

We can expandHT anda aboutHTsa=a0d and sa=a0d:

HTsa = avz
d = HTsa = a0d + DHsavz

− a0d, s29ad

Da = avz
− a0 = a0hfvz

expf− imsvzdtg − 1j, s29bd

where the relative amplitudefvz
is real. Thus we can rewrite

the Schrödinger equation ofa as [whereH0=HTsa=a0d]
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i]t a0 + i]tsavz
− a0d = U dH0

d a*
U

a=a0

+ U dH0

dDa*
U

Da=avz
−a0

+ UdDH

d a*
U

a=a0

+ U dDH

dDa*
U

Da=avz
−a0

.

s30d

Considering the factH0 is independent ofDa and DH is
independent ofa0, we have

U dH0

dDa*
U

Da=aovz
−a0

= 0, s31ad

UdDH

da*
U

a=a0

= 0. s31bd

From Eqs.(28), (30), and(31), we obtain an equation

i]tsavz
− a0d = U dDH

dDa*
U

Da=avz
−a0

=
dDH

dvz

dvz

dDa*
, s32d

which can be written in a more clear form

i]tsa0hf expf− imsvzdtg − 1jd

=
dDH

dvz
YFit fa0

* dm

duz
expfimsmzdtgG , s33ad

i.e.,

i]tsa0hf expf− imsvzdtg − 1jd

= F1

t

dDH

dvz

1

fa0
* expf− imsvzdtgGY dm

dvz
. s33bd

From this equation, we can easily obtain

− ]tfI0 f2g + f cossmtd]tI0 =
2

t

dDH

dvz
Y dm

dvz
. s34d

We takeI0 as time independent and hence obtain an equation
describing the growth of the relative intensity:

]t f
2 = −

1

I0

2

t

dDH

dvz
Y dm

dvz
. s35d

From this equation, we know thatf 2 will grow if the system
is in a state of]DH /dvz,0. By Eq.(35), we can study, when
the system is initially in a state of the vector potentiala0,
how soon its evolution to another system state of the vector
potential avz

is. Apprantly, if ]DH /dvzuvz=0,0, the system
will begin to leave thevz=0 state to avz=v1Þ0 state. Simi-
larly, if ]DH /dvzuvz=v1

,0, the system will continue to leave
the vz=v1Þ0 state to avz=v2Þ0 state. This process will
continue until the system is in a state ofvz=vm satisfing
]DH /dvzuvz=vm

=0.
For a givenP, the transverse structureI depends on the

longitudinal relativistic factorgz. This leads to the total
Hamiltonian having two way depending onVz: one is the
obvious dependence ofHT on Vz as expressed by Eq.(22),

and the other is dependence ofI on Vz as expressed by Eq.
(24). These two ways causeHT to have a complicated depen-
dence onVz. Because the stationary states of the laser-plasma
system are identified by differentVz, the relationship be-
tween the total energy of the system andVz enables us to
discuss the relative stability of those stationary states by
comparing their respective energy. In the following numeri-
cal experiments, we take a two-step calculation. In the first
step we calculate the intensity profile at a givenP but under
different Vz. The total Hamiltonian at those solved intensity
profiles is calculated in the second step. We try to find the
optimalVz that corresponds to the lowest value ofHT via this
two-step calculation.

III. NUMERICAL RESULTS AND DISCUSSION

A. Equilibrium states

In the following numerical calculation, we put field vector
potentiala in units of the Compton potentiale/mc2, length in
units of the laser wavelength in micronsl, and ion densityNi
in units of the critical densitym0,ev

2/4pe2. Herev is taken
to be 1.

First we calculate the transverse structureIsrd and the
density profilenesrd. Some examples ofI profiles and corre-
spondingne profiles are given in Fig. 1. Figure 1 indicates
that the increment ingz, when other parameters are given,
will lead to a further separation between the laser field and
the electron fluid. In other words, more photons congregate
in the evacuation region and the evacuation region becomes
larger.

The grown separation between the photon fluid and the
electron fluid implies electrons possessing less quiver ener-
gies. As previously mentioned, the separation between two
fluids enables the system energy to vary. This can also be
understood by the case in which two fluids do not contact;
i.e., they are completely separated. In such a case, the system
energy is just the summation of the energy of the laser field
in vacuum and that of free electrons. Obviously, the system
energy in this case differs fromHT greatly. The variation of
HT with respect togz is reflected in Fig. 2. From Fig. 2 one
can find that for some values ofP andNi, HT decreases from
its value atgz=1 to a minimum atgzÞ1 and then rises. Such
an interestingHT-gz curve can be qualitatively explained in
following manner. For suitable values ofP andNi, two fluids
are not fully separated from each other; the transverse struc-
ture atgz=1 can ensure that there are sufficiently more elec-
trons possessing sufficiently large quiver energies. Such a
large quiver energy can afford the energy requirement to pro-
mote electrons to a highergz state. However, this capacity of
promoting electrons to a highergz state is not infinite. With
gz rising, two fluids become further separated. Thus, the
quiver energy available for promotinggz decreases whereas
the energy requirement for this promotion does not decrease.
In other words, the increment ingz depletes the capacity of
promotinggz.

The dependence ofm on vz is reflected in Fig. 3. The
values of parameters in Fig. 3 equal those in Fig. 2. WhenP
is given, largerNi corresponds to largerdm /dvz, which will
decrease the growth rate off 2. Although largerNi corre-
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sponds to largerudDH /dvzu sdDH /dvz,0d, it might not
mean a faster growth off 2 because of the dependence of
dm /dvz on Ni. Moreover, the value ofdm /dvz is mainly de-
termined byNi. WhenNi is given, the variation inP does not
cause obvious variations indm /dvz. Because numerical re-
sults indicatedm /dvz.0, f 2 can grow only whendDH /dvz
becomes negative. OncedDH /dvz becomes negative, the
growth rate also depends on the value ofdm /dvz. From Figs.
2 and 3, we can find thatdDH /dvz and dm /dvz have a
weaker dependence onP but a stronger dependence onNi.
This implies that Ni is the primary factor determining
whether or notf 2 can grow to a substatial level.

B. Stablest equilibrium state

In the above theory, we have described the state of the
laser-plasma system inVz and Isr ;Vzd. Obviously,Vz identi-
fies the state of this system. In principle, the system can be in
anyVz state. If the system is isolated from its environment, it
will stay at its initial state. Here, the environment refers to
the plasmas outside the interaction region. In fact, the system
can exchange energy with its environment. To some extent,
we can view the system and its environment as an isolated
ensemble of conserved energy:Eens=Esys+Eenvir . In prin-

FIG. 1. (a) Tansverse intensity profiles.(b), (c) Density
profiles.

FIG. 2. The system energy vsgs. Here, dHT=HTsgs,P,Nid
−HTs1,P,Nid.
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ciple, this ensemble has equaling possibility to occupy any
microscopic state of energyEens=Esys+Eenvir . Thus for the
laser-plasma system, its possibility of occupying a steady
state of energyE1 depends on the number of environment
microscopic states of energyEens−E1. For the environment,
it consists of numerous noise sources, and its energy can be
approximately expressed as the summation of the energy of
each noise source,Eenvir =o jej.

The microscopic state of the environment is described by
parameters of noise sources—for example, the energy of ev-
ery noise source. It should be noted that the largerEenvir is,
the larger the number of setssejd satisfyingEenvir =o jej. This
suggests a largerEenvir corresponding to more microscopic
states of the environment. Thus, when the degree of energy
exchange between the system and environment is given,
smallerE1, or largerEenvir , is favored.

If a mode does not correspond to a local minimum in
HsVzd curve—i.e., it has a neighboring mode of lower
energy—according to the above discussion, it will have less
possibility to be occupied than this neighboring mode. In
particular, as the energy exchange between the system and
environment is extremely weak, this conclusion is still valid.
When the system is initially in a mode that is not a local
minimum mode, it will leave this initial mode to a mode with
lower energy because the initial mode has less possibility to
be occupied. From Eq.(35), we know that if negative

dnH /dvz has a sufficiently large value, the growth rate of
the laser field transiting from aVz=0 to anotherVzÞ0 state
is large enough to ensure the transition taking placing in a
short time interval, which is characteristic of laser-plasma
interactions.

C. Comparision with experiment

Hence, for suitableP andNi, the stability of the system is
possible to require electrons in the interaction region having
a nonzero collective speedVz. Once those electrons in the
interaction region possess this speedVz, their kinetic energies
Ez+E' will exceed a Vz-dependent threshold
,Vz

2/Î1−sVz/cd2. Here,Ez andE' represent axial and trans-
verse kinetic energies, respectively. In contrast, those elec-
trons outside the interaction region only have zeroEz. This
result can be reflected in the distributionfsEd. Supposing the
distribution in the absence of laser field is Maxwellian and
all electrons do not have axial velocity; thus logf is a linear
function ofE=E'. The presence of a laser field is possible to
enable some electrons obtaining a nonzeroEz while the other
not. Because some electrons obtain a positiveEz, correspond-
ingly f decreases in the low-E regime and increases in the
high-E regime. Because of an obvious energy difference be-
tween electrons inside the interaction region and those out-
side this region, logf is possible to become two lines joint-

FIG. 3. m vs vx.
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ing. These two lines correspond to electrons outside and
inside the interaction region, respectively. Of course, if there
is no difference betweenEz inside andEz outside the interac-
tion region, logf will remain a straight line.

The electron spectrum reported in Ref.[2] indicates that
the energy distribution shows a double-temperature charac-
ter. Moreover, with the plasma density decreasing, the distri-
bution gradually returns to a single-temperature type. The
density-dependent distribution, which transforms from
double-temperature type to single-temperature type, suggests
that another mechanism, in addition to the wake field accel-
eration mechanism, might be responsible for the relevant
physics. This is because the excitation of plasma wave is
valid in a wide density range, especially in the low-density
range. From the previous discussion, we find that the return
of the distribution to a single-temperature type can be quali-
tatively accounted for by our theory. As shown in Fig. 3 the
Vz=0 state, in the low-Ni case, is more stable than otherVz
Þ0 state, whereas for the same laser power aVzÞ0 state is
more stable in the high-Ni case, This implies that in the high
Ni case, a difference betweenEz inside andEz outside the
interaction region exists. On the contrary, this difference dis-
appears in the low-Ni case.

IV. SUMMARY

Extending the model of laser self-focusing in the absence
of a quasistatic magnetic field, we discuss the self-focusing

structures under differentVz. Numerical results indicate that
the increment inVz is possible to strengthen the separation
between the photon fluid and the electron fluid and hence
lead to the decrement of the system energy. This reveals the
laser-plasma system can be at a high-gz state by increasing
the separation between its two ingredient fluids. Some sys-
tem parameters, laser power and plasma density, are impor-
tant to determine whether or not the system can spontane-
ously become aVzÞ0 state. Numerical results indicate that a
low plasma density favors the system remaining at theVz
=0 state — i.e., in a state without a quasistatic magnetic field
(QMF).

In conclusion, we have presented a theory for self-
consistently understanding the presence of a QMF in laser-
plasma interactions. The presence of a QMF is related to a
transition of the system from aVz=0 state to aVzÞ0 state
owing to the stability requirement of the system. Stability
analyses reveal that the presence of a QMF does not always
take place but conditionally depends on the system param-
eters. Meanwhile, we also find that our theory can qualita-
tively explain some parameter-dependent variations of the
electron spectrum observed in experiments.
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